Abstract

When using optimal linear prediction to interpolate point observations of a mean square continuous stationary spatial process, one often finds that the interpolant mostly depends on those observations located nearest to the predictand. This phenomenon is called the screening effect. However, there are situations in which a screening effect does not hold in a reasonable asymptotic sense, and theoretical support for the screening effect is limited to some rather specialized settings for the observation locations. This paper explores conditions on the observation locations and the process model under which an asymptotic screening effect holds. A series of examples shows the difficulty in formulating a general result, especially for processes with different degrees of smoothness in different directions, which can naturally occur for spatial-temporal processes. These examples lead to a general conjecture and two special cases of this conjecture are proven. The key condition on the process is that its spectral density should change slowly at high frequencies. Models not satisfying this condition of slow high-frequency change should be used with caution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.