Abstract

Abstract A survey of South Dakota pork producers in 2019 demonstrated that water flow rate for nipple drinkers was highly variable among barns. Sixty-eight percent had water flow rates above the recommended rate of 500–1,000 mL/min (NSNG, 2010). The objective of this study was to determine the impact of water flow rate on finishing pig performance during the summer months. A total of 396 mixed-sex pigs, in two groups, were utilized in a 77-day trial (34.55 to103.8 kg BW) with 6 pigs/pen. Pens were assigned to one of three water flow rates (high, medium, low) based on the 3-hole diameters of the commercial water nipples used in the facility (2.0, 1.0, 0.80 mm; n = 22 pens/treatment). Daily water usage was recorded for each treatment along with room temperature, outside temperature, and relative humidity. Individual pen water flow rate was recorded every two weeks. At every diet phase change (26± 2.6 days), feed disappearance and individual pig body weight were recorded. Water flow rates averaged 1846±188, 906±214, 508±100 mL/min for high, medium, and low flow rates, respectively. Daily water disappearance for high, medium, and low treatments were 6.8, 2.3, 1.7±3.2 liters/pig, respectively. Final body weight (BW; 103.8±7.4 kg) did not differ. Daily gain (ADG) from 34.5±4.5 to 55.5±4.6 kg BW was greatest (P < 0.05) for high treatment. Daily intake (ADFI) and gain:feed (G:F) from 55.5±4.6 to 79.1±5.3 kg BW were greatest (P < 0.05) for high treatment. Cumulative ADFI was 2.27, 2.18, 2.16±0.16 kg (P < 0.05) in high, medium, and low flow ranges, respectively. There was no differences in cumulative ADG or G:F. Water flow rate had a significant impact on ADFI although there was minimal impact on gain and G:F. Water nipples should be regularly checked as part of normal barn maintenance to ensure adequate, but not excessive, water is available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.