Abstract
The numerical simulation for the scoliosis surgical correction could be helpful in establishing the best surgical planning for a given patient. Previous research at the Laboratoire de Bioécanique yielded a preliminary finite-element model, and demonstrated the feasibility of a patient-specific simulation. However its extreme tediousness and its lack of self-reliance made it difficult to be used in a clinical environment. The objective of our work is to take ever this finite-element model, in order: first, to improve two key-parameters, i.e. automation for the assessment of patient-specific mechanical properties, and robustness (numerical stability and self-reliance) for the simulation of surgery. Second, to model various clinical cases in order to ewaluate the clinical relevance of the model and to better understand mechanisms of correction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.