Abstract

Introduction In the presence of diabetes (DM), myocardial glucose uptake and glycolysis are impaired and the heart rapidly adapts to use exclusively fatty acids (FA) for ATP generation. This maladaptation is believed to play a key role in the development of a cardiomyopathy over time. Here, we show that stimulating myocardial nitric oxide synthase (NOS) activity is sufficient to alleviate myocardial metabolic inflexibility, improve energy metabolism and prevent LV dysfunction in DM by increasing myocardial insulin-independent glucose transport. Methods Myocardial-specific overexpression of GTP cyclohydrolase I (mGCH1) was used to increase both tetrahydrobiopterin (BH4) and NOS activity in cardiomyocytes. Diabetes mellitus (DM) was induced by multiple low-dose streptozotocin injections (vs sham). PCr/ATP ratio was measured in perfused hearts using 31 P-MRS, glucose transport estimated by deoxy-glucose uptake, and oxygen consumption rate (OCR) of intact cardiomyocytes using a phosphorescent probe. Results As expected, sham-injected mGCH1 transgenic hearts had higher BH4 levels and constitutive NOS activity compared with WT. 12 weeks after DM induction, LV dysfunction developed in WT mice but not in mGCH1 mice, in the absence of changes in myocardial BH4 content and NOS activity in either group. WT diabetic hearts had a lower PCr/ATP ratio (1.32±0.1 vs 1.73±0.1, p Myocardial GCH1 overexpression was associated with a higher protein levels of the insulin-independent glucose transporter, GLUT-1 (p Conclusions Our study reveals that a myocardial increase in BH4 and NOS activity is sufficient to maintain a favourable substrate utilisation and preserve cardiac mitochondrial function in the presence of DM. This work provides new insight into the potential metabolic triggers of diabetic cardiomyopathy and suggests exciting new targets for BH4-based therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call