Abstract

Background20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. MethodsLactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. ResultsHistone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. ConclusionsThis study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call