Abstract

Postoperative peritoneal adhesions are one of the most common surgical complications. In this study, we developed a 20(S)-ginsenoside Rg3-loaded methoxy poly (ethylene glycol)-block-poly(L-lactide-co-glycolide) (mPEG-b-PLGA) electrospun membrane (PEM/Rg3) that could not only serve as a physical barrier, but also as a drug delivery system that releases 20(S)-ginsenoside Rg3 constantly to prevent postoperative peritoneal adhesions. The characteristics of PEM/Rg3, including scanning electron microscopy, water contact angle, and mechanical analyses, were assessed. Degradation and drug release assays of PEM/Rg3 were performed. The anti-adhesion efficacy of PEM/Rg3 was evaluated in an abdomen-cecum mouse model. The adhesion scores, adhesion areas, hematoxylin and eosin (H&E) staining, immunofluorescence, and western blotting were assessed. The 20(S)-ginsenoside Rg3 loaded mPEG-b-PLGA electrospun fibers were successfully fabricated. The fibers were smooth, with no obvious drug crystals. PEM/Rg3 membranes were biodegradable and could be degraded gradually to release 20(S)-Ginsenoside Rg3 constantly from the membranes. The animal study showed that PEM/Rg3 exhibited an excellent adhesion prevention ability when compared with the control group, the PEM group, and polylactic acid (PLA) commercial membrane (Surgiwrap™) group. Immunofluorescence and western blotting studies showed that PEM/Rg3 inhibited the expressions of interleukin 1 (IL-1), interleukin 6 (IL-6), and reactive oxygen species modulator-1 (ROMO1). The 20(S)-ginsenoside Rg3-loaded mPEG-b-PLGA electrospun membranes exhibited satisfactory anti-adhesion efficacy by inhibiting inflammatory responses and oxidative stress. This composite represents a promising strategy to prevent postoperative peritoneal adhesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.