Abstract

A DC-DC buck converter capable of handling loads from 20 μA to 100 mA and operating off a 2.8-4.2 V battery is implemented in a 45 nm CMOS process. In order to handle high battery voltages in this deeply scaled technology, multiple transistors are stacked in the power train. Switched-Capacitor DC-DC converters are used for internal rail generation for stacking and supplies for control circuits. An I-C DAC pulse width modulator with sleep mode control is proposed which is both area and power-efficient as compared with previously published pulse width modulator schemes. Both pulse frequency modulation (PFM) and pulse width modulation (PWM) modes of control are employed for the wide load range. The converter achieves a peak efficiency of 75% at 20 μA, 87.4% at 12 mA in PFM, and 87.2% at 53 mA in PWM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call