Abstract

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in the stimulation of bone growth, mineralization, and intestinal calcium and phosphate absorption; it also acts as a general inhibitor of cellular proliferation. Several new, clinically relevant compounds dissociate antiproliferative and calcemic activities of 1,25(OH)2D3, but the molecular basis for this has not been clearly elucidated. Here, we tested whether the potency of one class of compounds, 20-epi analogues, to induce myeloid cell differentiation, is because of direct molecular effects on vitamin D receptor (VDR). We report that two 20-epi analogues, MC1627 and MC1288, induced differentiation and transcription of p21(Waf1,Cip1), a key VDR target gene involved in growth inhibition, at a concentration 100-fold lower than that of 1,25(OH)2D3. We compared this sensitivity to analogue effects on VDR interacting proteins: RXR, GRIP-1, and DRIP205, a subunit of the DRIP coactivator complex. Compared with the interaction of VDR with RXR or GRIP-1, the differentiation dose-response most closely correlated to the ligand-dependent recruitment of the DRIP coactivator complex to VDR and to the ability of the receptor to activate transcription in a cell-free system. These results provide compelling links between the efficiency of the 20-epi analogue in inducing VDR/DRIP interactions, transactivation in vitro, and its enhanced ability to induce cellular differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.