Abstract
Pairwise similarity coefficients are popular measure for binary variables. Many different measures of similarity have been proposed in the literature. Then we are interested in which one is the most effective for classifications. We focus on the fact that almost all measures of similarity are composed of interactions and main effects, and conjecture that the most useful similarity is an interaction because main effect don't play a role of classifications but totally order. All combinations of sixteen similarities coefficients and five clustering method were tested with music CD POS data. The cluster validation were assessed by interpretable, uniform, reproducible, external and internal criteria. As a result, the similarity coefficient which is more correlative with an interaction turns out more useful for classifications. That is, the best similarity is an interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Kodo Keiryogaku (The Japanese Journal of Behaviormetrics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.