Abstract

Background2′-5′-Oligoadenylate synthetase 1 (OAS1) plays an important role in inflammatory immune reactions. OAS1 polymorphisms have been associated with increased susceptibility to various diseases. We investigated the association of polymorphisms in OAS1 with tuberculosis (TB).MethodsA total of 1215 TB cases and 1114 healthy controls were enrolled from two independent studies. Genotyping was conducted using the improved multiplex ligase detection reaction (iMLDR) method. Associations between OAS1 polymorphisms (rs2240190, rs1131454, 10,774,671 and 11,066,453) and TB risk were established based on distributions of allelic frequencies using different genetic models.ResultsSignificant association was observed between rs10774671, rs1131454 and TB. In the initial study, the G allele of rs10774671 was a significantly protective factor against TB (P = 0.006) and the genotype of GG differed significantly between TB patients and controls under the codominant model (P = 0.008) after Bonferroni correction. In the validation study, we also observed that the rs10774671 G allele (P = 0.001) and GG genotype (P = 0.001) were associated with TB. In addition, we found that the rs1131454 G allele (P = 0.004) and GG genotype (P = 0.001) were protective against TB in the Chinese Han population.ConclusionsWe report novel associations of polymorphisms in OAS1 with TB in the Chinese Tibetan and Han populations. Similar studies in different populations and functional studies are warranted to confirm our results.

Highlights

  • Tuberculosis (TB) is an infectious disease that constitutes a major global health problem

  • The purpose of the study was to evaluate the prevalence of polymorphisms within the Oligoadenylate synthetase 1 (OAS1) gene in TB cases and healthy controls from the Chinese Tibetan and Han populations

  • All four Single-nucleotide polymorphisms (SNPs) did not deviate from Hardy-Weinberg equilibrium (HWE)

Read more

Summary

Introduction

Tuberculosis (TB) is an infectious disease that constitutes a major global health problem. It is a major cause of morbidity and mortality globally, in Asia and Africa, and ranks alongside human immunodeficiency virus (HIV) as a leading cause of death worldwide [1]. In 2017, an estimated 1.7 billion individuals were newly infected with the causative agent of TB [1]. Only 5–15% of them will develop TB during their lifetime [2]. The outcome of TB infection is affected by many factors, such as malnutrition, co-infection with other pathogens, exposure to microbes and previous vaccination [3]. It was reported that host genetic factors

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.