Abstract

As a type of pattern-recognition proteins (PRRs), C-type lectins (CTLs) perform important functions in non-self recognition and clearance of pathogens in innate immunity. In this study, a unique 2-transmembrane CTL (designated as Mn-2TM-cLec) with a single carbohydrate recognition domain (CRD) was isolated from Macrobrachium nipponense. The full-length cDNA of Mn-2TM-cLec consisted of 3265 bp with an 837 bp open reading frame encoding a protein with 278 amino acids. Mn-2TM-cLec was ubiquitously distributed in various tissues of normal prawn, particularly in the hemocytes, hepatopancreas, and gills. The expression of Mn-2TM-cLec was significantly up-regulated in the gills and hepatopancreas after the prawns were challenged with Staphylococcus aureus and Vibrio parahaemolyticus. RNA interference knock-down of Mn-2TM-cLec gene decreased the transcription levels of three antimicrobial peptides (anti-lipopolysaccharide factor (ALF) 1, ALF2, and Crustin (Crus) 1) after V. parahaemolyticus infection. The recombinant CRD of Mn-2TM-cLec could bind lipopolysaccharide, peptidoglycans, and diverse bacterial strains and agglutinate S. aureus and V. parahaemolyticus in a Ca2+-dependent manner. In addition, the rCRD enhanced the clearance of V. parahaemolyticus injected in prawns. In summary, Mn-2TM-cLec might act as a PRR to participate in the prawn immune defense against pathogens through its antimicrobial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.