Abstract

Thiolated polymers are commonly preferred for biomedical applications with their good permeation properties providing them higher bioavailability. However, the thiolation process is mostly time-consuming series of chemical reactions. This study describes a simple irreversible thiol group integration to the pectin hydrogels by noncovalent bonding. We used 2-thiobarbituric acid (TBA) for thiolation. We proved with full-atom molecular dynamics simulations and experimental methods that TBA desertion is negligible. Pectin hydrogels become more flexible and their disintegration is delayed from 4 h up to four days with TBA addition. Also, hydrogels can successfully deliver the model drug, theophylline, showing a controlled release profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.