Abstract

A series of symmetry-based HIV protease inhibitors was designed and synthesized. Modification of the core regiochemistry and stereochemistry significantly affected the potency, metabolic stability, and oral bioavailability of the inhibitors, as did the variation of a pendent arylmethyl P3 group. Optimization led to the selection of two compounds, 10c (A-790742) and 9d (A-792611), for advancement to preclinical studies. Both compounds displayed low nanomolar potency against wild type HIV in the presence of human serum, low rates of metabolism in human liver microsomes, and high oral bioavailability in animal models. The compounds were examined in a preclinical model for the hyperbilirubinemia observed with some HIV PIs, and both exhibited less bilirubin elevation than comparator compounds. X-ray crystallographic analyses of the new cores were used to examine differences in their binding modes. The antiviral activity of the compounds against protease inhibitor resistant strains of HIV was also determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.