Abstract

Our work on the Computational Geometry Challenge 2019 on area-optimal polygonizations is based on two key components: (1) sampling the search space to obtain initial polygonizations and (2) optimizing such a polygonizations. Among other heuristics for obtaining polygonizations for a given set P of input points, we discuss how to combine 2-opt moves with a line sweep to convert an initial random (non-simple) polygon whose vertices are given by P into a polygonization P . The actual optimization relies on a constrained triangulation of the interior and exterior of a polygonization to speed-up local modifications of the polygonization to increase or decrease its area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.