Abstract

Prior studies have shown that 2′-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2′-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT) and a mutant in the NS5 gene (WNV-E218A) lacking 2′-O methylation of the 5′ viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1 −/− mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS) and a greater than 16,000-fold decrease in LD50 values in Ifit1 −/− compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1 −/− brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB) regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8+ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2′-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types.

Highlights

  • Type I interferon (IFN) restricts infection of many viruses through cell-intrinsic and cell-extrinsic effects on replication, and by priming adaptive B and T cell responses

  • We recently showed that a West Nile virus (WNV) mutant in NS5 (WNV-E218A) lacking 29-O methyltransferase activity was attenuated in primary macrophages but replicated well in cells lacking type I interferon (IFN) signaling or expression of Ifit1, an IFN-stimulated gene

  • We follow-up these studies by examining the pathogenesis in Ifit12/2 mice of WNV-E218A, the mutant virus lacking 29-O methyltransferase activity

Read more

Summary

Introduction

Type I interferon (IFN) restricts infection of many viruses through cell-intrinsic and cell-extrinsic effects on replication, and by priming adaptive B and T cell responses (reviewed in [1]). Expression of type I IFN after RNA virus infection generally occurs after recognition of viral RNA by pathogen recognition receptors in the cytoplasm (by RIG-I and MDA5) or the endosome (TLR3, TLR7, and TLR8), and initiation of signaling cascades that result in translocation of interferon regulatory factors (IRF-3 and IRF-7) with transcriptional activity (reviewed in [2]). Ifit (ISG56, p56) is a highly induced ISG with tetratricopeptide repeats, and a member of an evolutionarily conserved family of proteins that are expressed in response to type I IFN, interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-a) and certain pathogen associated molecular patterns (PAMPs) (reviewed in [4]). More recent studies have suggested additional inhibitory mechanisms including the control of trans-

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.