Abstract

We report on a scheme of pulse amplification and simultaneous self-compression in fluoride fiber for generating a high-peak-power pulse at 2.8-µm wavelength. We find dispersion management plays a key role for the amplification and self-compression process. Through dispersion management with a Ge rod, pulse amplification and simultaneous pulse self-compression were realized in the small anomalous dispersion region. A 2-MW peak-power pulse was achieved through amplification and self-compression in Er:ZBLAN fiber, with pulse energy of 101 nJ and pulse duration of 49 fs. To the best of our knowledge, this is the highest peak power obtained from fluoride fiber at 2.8 µm, and will benefit a series of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call