Abstract

Metabolic syndrome (MetS) is a common disorder that is associated with hypertension and poses a significant cardiovascular risk. Deactivation of extra-neuronal norepinephrine is mediated by catechol-O-methyltransferase (COMT). Endogenous 2-methoxyestradiol (2ME) is a product of COMT activity. The current study investigated the impact of 2ME on MetS-induced hypertension and the possible alterations in COMT expression and activity in rats. Animals were randomly divided into 4 groups. Group 1 received drinking water and standard food pellets. Groups 2, 3 and 4 were subjected to experimental induction of MetS. Animals in groups 3 and 4 were given daily IP injection of 2ME (25 and 50 mg/kg, respectively). MetS animals showed significant increases in body weight gain and visceral fat, fasting blood glucose and serum insulin and insulin resistance. Meanwhile, MetS was associated with a significant hypertriglyceridemia. Further, MetS significantly increased systolic, diastolic and mean arterial blood pressure. These effects were associated with significant reduction in COMT expression in the liver, kidneys and aorta as well as reduced hepatic activity. 2ME inhibited the alterations in body weight gain, visceral fat accumulation, fasting blood glucose and serum insulin, insulin resistance and serum triglycerides. Elevations in blood pressure were significantly inhibited by 2ME. Also, it attenuated the decrease in liver, kidney and aorta COMT expression and hepatic COMT activity. MetS was associated with elevated epinephrine and norepinephrine levels. Only the higher dose of 2ME significantly mitigated the rise in epinephrine level. In conclusion, 2ME protects against MetS-induced hypertension and averts COMT inhibited expression and activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call