Abstract

Kidney ischemia reperfusion injury (IRI) is characterized by tubular cell death. DNA double-strand breaks is one of the major sources of tubular cell death induced by IRI. 2-Mercaptoethanol (2-ME) is protective against DNA double-strand breaks derived from calf thymus and bovine embryo. Here, we sought to determine whether treatment with 2-ME attenuated DNA double-strand breaks, resulting in reduced kidney dysfunction and structural damage in IRI. Kidney IRI or sham-operation in mice was carried out. The mice were treated with 2-ME, Ras-selective lethal 3, or vehicle. Kidney function, tubular injury, DNA damage, antioxidant enzyme expression, and DNA damage response (DDR) kinases activation were assessed. Treatment with 2-ME significantly attenuated kidney dysfunction, tubular injury, and DNA double-strand breaks after IRI. Among DDR kinases, IRI induced phosphorylation of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR), but IRI reduced phosphorylation of other DDR kinases including ataxia telangiectasia and Rad3 related, checkpoint kinase 1 (Chk1), Chk2, and Chinese hamster cells 1 (XRCC1). Treatment with 2-ME enhanced phosphorylation of ATM and ATM-mediated effector kinases in IRI-subjected kidneys, suggesting that 2-ME activates ATM-mediated DDR signaling pathway. Furthermore, 2-ME dramatically upregulated glutathione peroxidase 4 (GPX4) in IRI-subjected kidneys. Inhibition of GPX4 augmented adverse IRI consequences including kidney dysfunction, tubular injury, DNA double-strand breaks, and inactivation of ATM-mediated DDR signaling pathway after IRI in 2-ME-treated kidneys. We have demonstrated that exogenous 2-ME protects against DNA double-strand breaks after kidney IRI through GPX4 upregulation and ATM activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call