Abstract
AbstractLet (X, d) be a metric space, and let Lip(X) denote the Banach space of all scalar-valued bounded Lipschitz functions ƒ on X endowed with one of the natural normswhere L(ƒ) is the Lipschitz constant of ƒ. It is said that the isometry group of Lip(X) is canonical if every surjective linear isometry of Lip(X) is induced by a surjective isometry of X. In this paper we prove that if X is bounded separable and the isometry group of Lip(X) is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry. Furthermore, we give a complete description of all 2-local isometries of Lip(X) when X is bounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.