Abstract

In ordinary category theory, limits are known to be equivalent to terminal objects in the slice category of cones. In this paper, we prove that the 2-categorical analogues of this theorem relating 2-limits and 2-terminal objects in the various choices of slice 2-categories of 2-cones are false. Furthermore we show that, even when weakening the 2-cones to pseudo- or lax-natural transformations, or considering bi-type limits and bi-terminal objects, there is still no such correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.