Abstract

Abstract The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs where vertices of the two parts lie on two horizontal lines and edges lie between these lines. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\in \{2,3,4,5\}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$ while there are also $2$-layer $k$-planar graphs with pathwidth at least $(k+3)/2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.