Abstract

2-Hydroxypropyl-β-cyclodextrin (HPCD) is an FDA approved vehicle for drug delivery and an efficient cholesterol-lowering agent. HPCD was proposed to lower tissue cholesterol via multiple mechanisms including those mediated by oxysterols. CYP27A1 and CYP46A1 are the major oxysterol-producing enzymes in the retina that convert cholesterol to 27- and 24-hydroxycholesterol, respectively. We investigated whether HPCD treatments affected the retina of wild-type and Cyp27a1-/- Cyp46a1-/- mice that do not produce the major retinal oxysterols. HPCD administration was either by i.p., p.o. or s.c. Delivery to the retina was confirmed by angiography using the fluorescently labelled HPCD. Effects on the levels of retinal sterols, mRNA and proteins were evaluated by GC-MS, qRT-PCR and label-free approach, respectively. In both wild-type and Cyp27a1-/- Cyp46a1-/- mice, HPCD crossed the blood-retinal barrier when delivered i.p. and lowered the retinal cholesterol content when administered p.o. and s.c. In both genotypes, oral HPCD treatment affected the expression of cholesterol-related genes as well as the proteins involved in endocytosis, lysosomal function and lipid homeostasis. Mechanistically, liver X receptors and the altered expression of Lipe (hormone-sensitive lipase), Nceh1 (neutral cholesterol ester hydrolase 1) and NLTP (non-specific lipid-transfer protein) could mediate some of the HPCD effects. HPCD treatment altered retinal cholesterol homeostasis and is a potential therapeutic approach for the reduction of drusen and subretinal drusenoid deposits, cholesterol-rich lesions and hallmarks of age-related macular degeneration. This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.