Abstract

Women are more likely to suffer from a bingeing-related eating disorder, which is surprising, since estradiol reduces meal size and is associated with reduced binge frequency. This apparent contradiction may involve the estradiol metabolite, 2-hydroxyestradiol. We previously reported that female rats had faster escalations in shortening intake during the development of bingeing than did males, but acute administration of 2-hydroxyestradiol increased the intake of vegetable shortening to a greater extent in male rats once bingeing was established. Here, we report two separate studies that follow up these previous findings. In the first, we hypothesized that chronic exposure to 2-hydroxyestradiol would promote escalation of bingeing during binge development in ovariectomized female rats. In the second, we hypothesized that acute exposure to 2-hydroxyestradiol would enhance dopamine signaling in the prefrontal cortex after bingeing was established in male rats. In study 1, non-food-deprived female rats were separated into 3 groups: ovariectomized (OVX) with chronic 2-hydroxyestradiol supplementation (E), OVX with vehicle supplementation (O), and intact with vehicle (I). Each group was given access to an optional source of dietary fat (shortening) on Mon, Wed, and Fri for 4weeks. 2-hydroxyestradiol supplementation prevented OVX-induced weight gain and enhanced escalation of shortening intake over the four-week period (ps<0.05). Additionally, in week 4, rats in the E group ate significantly more shortening than I controls, less chow than either the O or I group, and had a higher shortening to chow ratio than O or I (ps<0.05). Study 2 indicated that acute injection of 2-hydroxyestradiol abolished shortening-evoked dopamine efflux in the prefrontal cortex of bingeing male rats (p<0.05). Together, these studies indicate that 2-hydroxyestradiol can exacerbate bingeing as it develops and can suppress dopamine signaling in the prefrontal cortex once bingeing is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.