Abstract

High-performance computing is highly dependent on the communication network connecting the nodes. In this paper, we propose a 2-Dilated flattened butterfly (2DFB) network which provides non-blocking performance for relatively low cost overhead. We study the topological properties of the proposed 2DFB network and compare it with different nonblocking switching topologies. We observe that a dilation factor of two is sufficient to obtain nonblocking property for a flattened butterfly structure irrespective of its size or dimension. Dilating each link in a flattened butterfly causes an increase in cost. Therefore, we modeled the implementation cost of a 2DFB network and compared it with other popular nonblocking networks. We observe that the cost of a 2DFB is less than other nonblocking networks, while at the same time providing reduced latency because of its reduced diameter and hop count. We also propose a procedure to develop a conflict-free static routing schedule as well as an adaptive load balanced routing scheme (ALDFB) for 2DFB networks. Finally, we also describe the hardware implementation of a 2DFB network using the NetFPGA as the switching element and verify the nonblocking behavior of a 2DFB. We also show that the 2DFB topology can be used to build high speed switching systems with reduced cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.