Abstract
In childhood acute lymphoblastic leukemia, treatment failure is associated with resistance to glucocorticoid agents. Resistance to this class of drugs represents one of the strongest indicators of poor clinical outcome. We show that leukemic cells, which are resistant to the glucocorticoid drug methylprednisolone, display a higher demand of glucose associated with a deregulation of metabolic pathways, in comparison to sensitive cells. Interestingly, a combinatorial treatment of glucocorticoid and the glucose analog 2-deoxy-D-glucose displayed a synergistic effect in methylprednisolone-resistant cells, in an oxygen tension-independent manner. Unlike solid tumors, where 2-deoxy-D-glucose promotes inhibition of glycolysis by hexokinase II exclusively under hypoxic conditions, we were able to show that the antileukemic effects of 2-deoxy-D-glucose are far more complex in leukemia. We demonstrate a hexokinase II-independent cell viability decrease and apoptosis induction of the glucose analog in leukemia. Additionally, due to the structural similarity of 2-deoxy-D-glucose with mannose, we could confirm that the mechanism by which 2-deoxy-D-glucose predominantly acts in leukemia is via modification in N-linked glycosylation, leading to endoplasmic reticulum stress and consequently induction of the unfolded protein response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.