Abstract

AbstractUntil now, few offshore seismic studies have acquired simultaneously P‐ and S‐ wave data to derive in detail the seismic structure of the oceanic crust. We present 2‐D Vp and Vs models using wide‐angle seismic data at the Indian basin adjacent to the NinetyEast Ridge. Here, an outcrop basement located at the middle of the seismic line presents uppermost crustal Poisson's ratios (ν) of 0.28–0.29 (Vp ∼ 4.2 km/s and Vs ∼ 2.3 km/s). At the flanks of the outcrop basement, the sediment cover is 200–300 m thick and ν values are similar (0.28–0.3), but Vp and Vs values are higher (4.5–4.8 and 2.4–2.6 km/s, respectively). We interpret the relatively lower Vp and Vs around the basement outcrop in terms of hydrothermal alteration, while at the flanks of the basement outcrop, hydrothermal alteration has most likely ceased by sedimentation and compaction processes. Across the seismic layer 2, the Vp–Vs trend is linear and follows a ν value of 0.28–0.29, however, at the seismic layer 2/3 transition, the Vp–Vs trend abruptly changes following a ν value of 0.25–0.26. These reduced observed ν values at the layer 2/3 transition are lower than those reported by laboratory measurements for gabbro (ν ∼ 0.293) and are interpreted in terms of epidotization at the dike‐gabbro contact and/or crack‐change properties around the lower part of the intrusive sheeted dike section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call