Abstract
Ultrasound shear wave elastography (SWE) imaging is emerging as a quantitative and non-invasive tissue characterization modality. Shear wave generation using external mechanical vibration (EMV) has received extensive research interest over acoustic radiation force impulse (ARFI) because of its low cost and potential for portability. In this paper, we propose an EMV concept with multiple spherical sources that can be easily reconfigured in three configurations to induce unique shear wave propagation patterns. We introduce two design embodiments of this concept bench test design for proof of concept and a clinically deployable design. The latter is designed to incorporate size, ergonomics, portability and power consumption considerations and constraints. Experimental validation on elasticity phantoms using both EMV designs demonstrates shear wave generation and elasticity reconstruction comparable in performance to ElastQ, a commercial ARFI-based shear elastography technology from Philips. In addition, the local displacement amplitude induced by EMV is 10 times greater than that induced by ARFI at the same given depth. Finally, the multiple configurations of the presented EMV design would allow exploration of advanced elastography methods such as tissue anisotropic elasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.