Abstract

AbstractThis study investigates the ionospheric total electron content (TEC) responses in the 2‐D spatial domain and electron density variations in the 3‐D spatial domain during the annular solar eclipse on 14 October 2023, using ground‐based Global Navigation Satellite System (GNSS) observations, a novel TEC‐based ionospheric data assimilation system (TIDAS), ionosonde measurements, and satellite in situ data. The main results are summarized as follows: (a) The 2‐D TEC responses exhibited distinct latitudinal differences. The mid‐latitude ionosphere exhibited a more substantial TEC decrease of 25%–40% along with an extended recovery time of 3–4 hr. In contrast, the equatorial and low‐latitude ionosphere experienced a smaller TEC reduction of 10%–25% and a faster recovery time of 20–50 min. The minimal eclipse effect was observed near the northern equatorial ionization anomaly crest region. (b) The ionospheric electron density variations during the eclipse were effectively reconstructed by TIDAS data assimilation in the 3‐D domain, providing important altitude information with validity. (c) The ionospheric electron density variations showed a notable altitude‐dependent feature. The eclipse led to a substantial electron density reduction of 30%–50%, with the maximum depletion occurring around the ionospheric F2‐layer peak height (hmF2) of 250–350 km. The post‐eclipse recovery of electron density exhibited a relatively slower pace near the F2‐layer peak height than that at lower and higher altitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call