Abstract

A new algorithm for passive bistatic radar (PBR) localization is proposed via joint exploitation of multiple illuminators of opportunity and measurements gathered by a colocated active radar. Ad-hoc constraints within the localization process are bestowed accounting for both a priori information on the PBR receive antenna main-beam size and the uncertainty characterizing active radar data, i.e., the root mean square error (RMSE) of range/bearing measurements. Hence, the estimation task is cast as an elliptic positioning problem, according to the constrained least squares framework. The resulting non-convex optimization problem is globally solved providing a closed-form estimate in Cartesian coordinates. The performance of the proposed estimator, in terms of RMSE, exhibits sensible improvement with respect to counterparts. The proposed technique is also applied to the case of a dynamic scenario for a bi-sensor surveillance system, where the active rotating platform acquires measurements at each scanning period. The results show the localization performance improvement achieved when the system is complemented with a PBR staring in a specific search sector of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.