Abstract

A lithium-sulfur battery is a new energy storage device with low cost, high energy storage density, and environmental protection. It is an important tool for future battery systems. However, owing to the shuttle of polysulfides, insulation performance of sulfur, and volume change, capacity decay and cycle instability result, which limits the future application of lithium-sulfur batteries. 2 D materials, such as graphene, carbide, nitride, sulfide, oxide, and their aggregates, provide high surface area to improve sulfur utilization and cycle performance. In this Minireview, various 2 D materials are summarized that use physical confinement and chemical interactions to inhibit the shuttle of polysulfides. We outline the controlled spacing of 2 D materials, abundant active sites, and large transverse size separators and interlayers. The effects on the interlayer and separator based on 2 D materials at the lithium anode prevent polysulfide dissolution are also reviewed. Finally, the challenges and prospects of 2 D materials for lithium-sulfur batteries are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.