Abstract

The aim of this work was to simulate in two-dimensions the spatio-temporal evolution of the moisture content, the temperature, and the mechanical stress within a highly deformable and water saturated product during convective drying. The material under study was an elongated potato sample with a square section placed in hot air flow. A comprehensive hydro-thermal model had been merged with a mechanical model, assuming a viscoelastic material, a plane deformation, and an isotropic linear hydric-shrinkage of the sample. This model was validated on the basis of the average water content and core temperature curves for drying trials under different operating conditions. The material viscoelastic properties were measured by means of stress relaxation tests at different water contents. The viscoelastic behavior was described by a generalized Maxwell model whose parameters were correlated to water content. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of product potential damage. The sample shape was also predicted all aver the drying process with reasonable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.