Abstract
K. Meyer has advocated for the study of elliptic functions and integrals from a dynamical systems point of view. Here, we follow his advice and we propose the bidimensional Hamiltonian Duffing oscillator as a model; it allows us to deal with the elliptic integral of third kind directly. Focusing on bounded trajectories we do a detailed analysis of the solutions in the three regions defined by the parameters. In our opinion, for the study of elliptic functions, the model presented here represents an alternative to the pendulum or the free rigid body systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.