Abstract

Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase-inhibiting proteins (XIPs), and thaumatin-like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a DeltaTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2-D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum DeltaTri5. Some (iso)forms were up-regulated, whereas others were down-regulated. This pathogen-specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI- and XIP-type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non-glycosylated XIP forms increased more strongly than their glycosylated counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call