Abstract
The uniform semiclassical expression for the energy-dependent transmission probability through a barrier has been a staple of reaction rate theory for almost 90 years. Yet, when using the classical Euclidean action, the transmission probability is identical to 1/2 when the energy equals the barrier height since the Euclidean action vanishes at this energy. This result is generally incorrect. It also leads to an inaccurate estimate of the leading order term in an ℏ2n expansion of the thermal transmission coefficient. The central result of this paper is that adding an ℏ2 dependent correction to the uniform semiclassical expression, whether as a constant action or as a shift in the energy scale, not only corrects this inaccuracy but also leads to a theory that is more accurate than the previous one for almost any energy. Shifting the energy scale is a generalization of the vibrational perturbation theory 2 (VPT2) and is much more accurate than the "standard" VPT2 theory, especially when the potential is asymmetric. Shifting the action by a constant is a generalization of a result obtained by Yasumori and Fueki (YF) only for the Eckart barrier. The resulting modified VPT2 and YF semiclassical theories are applied to the symmetric and asymmetric Eckart barrier, a Gaussian barrier, and a tanh barrier. The one-dimensional theories are also generalized to many-dimensional systems. Their effect on the thermal instanton theory is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.