Abstract

Abstract The Miura ori is a very classical origami pattern used in numerous applications in engineering. A study of the shapes that surfaces using this pattern can assume is still lacking. A constrained nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the unconstrained PDE is proved for general Dirichlet boundary conditions. Then an H 2 H^{2} -conforming discretization is introduced to approximate the solution of the PDE coupled to a Newton method to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that nontrivial shapes can be achieved using periodic Miura tessellations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call