Abstract

Photolithography is a crucial technology for both research and industry. The desire to be able to create ever finer features has fuelled a push towards lithographic methods that use electromagnetic radiation or charged particles with the shortest possible wavelength. At the same time, the physics and chemistry involved in employing light or particles with short wavelengths present great challenges. A new class of approaches to photolithography on the nanoscale involves the use of photoresists that can be activated with one colour of visible or near-ultraviolet light and deactivated with a second colour. Such methods hold the promise of attaining lithographic resolution that rivals or even exceeds that currently sought by industry, while at the same time using wavelengths of light that are inexpensive to produce and can be manipulated readily. The physical chemistry of 2-colour photolithography is a rich area of science that is only now beginning to be explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.