Abstract

Abstract The antitumor mechanism of action of 2′-C-cyano-2′-deoxy-1-β-d-arabinofuranosylcytosine (CNDAC) has been examined. CNDAC was designed as a potentially DNA-self-strand-breaking nucleoside. It had potent antitumor effects against various solid tumors in vitro as well as in vivo. Using a chain-extension method with Vent (exo−) DNA polymerase and a short primer/template system, we found that 5′-triphosphate of CNDAC (CNDACTP) was incorporated into the primer at a site opposite a guanine residue in the template. After further chain-extension reaction of the primer containing CNDAC at the 3′-terminus, chain elongation was not observed. Therefore, CNDACTP appeared to act as a chain-terminator. Analyses of the structure of the 3′-terminus in the primer revealed 2′-C-cyano-2′,3′-didehydro-2′,3′-dideoxycytidine (ddCNC) together with CNDAC and 2′-C-cyano-2′-deoxy-1-β-d-ribofuranosylcytosine (CNDC). The existence of ddCNC in the 3′-end of the primer would be due to the self-strand-break by the nucleotide incorporated next to CNDAC. We also found that CNDAC was epimerized to CNDC in near-neutral to alkaline media. Therefore, CNDC found in the primer was epimerized after incorporation of CNDACTP into the primer. We also described the metabolism of CNDAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.