Abstract

아크릴레이트계 모노머를 사용한 최적화 된 포토폴리머에 안트라센 형광폴리머를 첨가하여 형광 특성을 가지는 포토폴리머를 제조하고, 514 nm 레이저를 이용하여 2-beam coupling 방법으로 형광 포토폴리머 필름 위에 회절격자를 형성하였다. 기록 시작 후 30초 이내에 선명한 fluorescent line pattern 이 형성되었으며, 회절격자 형성 뒤, 패턴이 형성된 부분에서 형광 세기의 증가가 관찰되었다. 기록 시 간섭 빔 앞에 mask pattern 을 이용하여 <TEX>$50\;{\mu}m$</TEX> gap electrode 패턴을 형성하였다. 이 때 형성된 패턴은 micron scale gap패턴 안에 회절격자로부터 생성된 submicron scale의 grating line을 보였다. 이는 beam의 광 고분자 film 표면에 대한 각도(<TEX>$3.6^{\circ}$</TEX>, <TEX>$15^{\circ}$</TEX>), 패턴에 사용된 광 고분자의 굴절률 등으로부터 Bragg's equation 을 사용하여 계산된 이론적인 grating 간격 (<TEX>$0.6\;{\mu}m$</TEX>) 과 오차범위 안에서 일치 하였다. Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value (<TEX>$2.5\;{\mu}m$</TEX> and <TEX>$0.6\;{\mu}m$</TEX>) based on the refractive index of the photopolymer and beam incident angle (<TEX>$3.4^{\circ}$</TEX>, <TEX>$15^{\circ}$</TEX>) to the photopolymer surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.