Abstract

This paper contributes to the classification of finite 2-arc-transitive graphs. In [12], all the regular covers of complete bipartite graphs Kn,n were classified, whose covering transformation group is cyclic and whose fibre-preserving automorphism group acts 2-arc-transitively. In this paper, a further classification is achieved for all the regular covers of Kn,n, whose covering transformation group is elementary abelian group of order p2 and whose fibre-preserving automorphism group acts 2-arc-transitively. As a result, two new infinite families of 2-arc-transitive graphs are found. Moveover, it will be explained that it seems to be infeasible to classify all such covers when the covering transformation group is an elementary abelian group of order pk for an arbitrary integer k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.