Abstract

Glucose metabolism of bifidobacteria in the presence of 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ), a specific growth stimulator for bifidobacteria, and ferricyanide (Fe(CN)(6)(3-)) as an extracellular electron acceptor was examined using resting cells of Bifidobacterium longum and Bifidobacterium breve. NAD(P)H in the cells is oxidized by ACNQ with the aid of diaphorase activity, and reduced ACNQ donates the electron to Fe(CN)(6)(3-). Exogenous oxidation of NADH by the ACNQ/Fe(CN)(6)(3-) system suppresses the endogenous lactate dehydrogenase reaction competitively, which results in the remarkable generation of pyruvate and a decrease in lactate production. In addition, a decrease in acetate generation is also observed in the presence of ACNQ and Fe(CN)(6)(3-). This phenomenon could not be explained in terms of the fructose-6-phosphate phosphoketolase pathway, but suggests rather that glucose is partially metabolized via the hexose monophosphate pathway. This was verified by NADP(+)-induced reduction of Fe(CN)(6)(3-) in cell-free extracts in the presence of ACNQ. Effects of the ACNQ/Fe(CN)(6)(3-) system on anaerobically harvested cells were also examined. Stoichiometric analysis of the metabolites from the pyruvate-formate lyase pathway suggests that exogenous oxidation of NADH is an efficient method to produce ATP in this pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.