Abstract

beta(2)-Adrenoceptor agonists are the most effective bronchodilators currently available, and are used for symptom management in asthmatics. However, whether beta(2)-agonists are also antitussive is controversial. Identifying an antitussive role for beta(2)-agonists and dissecting the possible mechanism of action may help to explain the inconsistencies in the clinical literature and lead to the development of novel therapeutic agents. The aim of the present study was to determine whether or not beta(2)-agonists attenuate the tussive response in guinea pig and human models, and, if so, to identify the mechanism(s) involved. Depolarisation of vagal sensory nerves (human and guinea pig) was assessed as an indicator of sensory nerve activity. Cough was measured in a conscious guinea pig model. A beta(2)-agonist, terbutaline, dose-dependently inhibited the cough response to tussive agents in conscious guinea pigs. Terbutaline and another beta(2)-agonist, fenoterol, blocked sensory nerve activation in vitro. Using these mechanistic models, it was established that beta(2)-agonists suppress the tussive response via a nonclassical cyclic adenosine monosphosphate-dependent pathway that involves the activation of protein kinase G and, subsequently, the opening of large-conductance calcium-activated potassium channels. In conclusion, beta(2)-adrenoceptor agonists are antitussive, and this property occurs due to a direct inhibition of sensory nerve activation. These findings may help to explain the confusion that exists in the clinical literature, and could be exploited to identify novel therapies for the treatment of cough, which is a significant unmet medical need.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call