Abstract

AbstractThe phosphodiester linkage of 3′‐O‐levulinoylthymidine 5′‐methylphosphate (5) has been protected with 2‐[(acetyloxy)methyl]‐4‐(acetylsulfanyl)‐2‐(ethoxycarbonyl)‐3‐oxobutyl group (to give 1) to study the potential of this group as an esterase‐ and thermolabile protecting group. The group turned out to be unexpectedly thermolabile, being removed as ethyl 3‐(acetyloxy)‐4‐(acetylsulfanyl)‐2‐methylidenebut‐3‐enoate (10) without accumulation of any intermediates. The half‐life of this reaction at pH 7.5 and 37° is 14 min. Hog liver esterase (HLE), in turn, removes the protecting group as ethyl 4‐(acetylsulfanyl)‐2‐methylidene‐3‐oxobutanoate (12). On using 2.6 units of HLE in 1 ml, the rate of the enzymatic deprotection was still only one third of that of the nonenzymatic reaction. The mechanisms of both reactions have been studied and discussed. The crucial step seems to be removal of the O‐bound Ac group, either by esterase or by migration to the neighboring 3‐oxo group (nonenzymatic removal). This triggers the removal by retro‐aldol condensation/elimination mechanism. No alkylation of glutathione (GSH) upon the deprotection of 1 could be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.