Abstract

To find potential α-glucosidase inhibitors, a series of 2β-acetoxyferuginol derivatives containing cinnamic acid (WXC-1 ∼ 25) were synthesized and investigated their biological activity. All derivatives (WXC-1 ∼ 25) displayed better inhibitory activity (IC50 values: 7.56 ± 1.35 ∼ 25.63 ± 1.72 μM) compared to acarbose (IC50 vaule: 564.28 ± 48.68 μM). In particularly, WXC-25 with 4-hydroxycinnamic acid section showed the best inhibitory activity (IC50 vaule: 2.02 ± 0.14 μM), ∼75-fold stronger than acarbose. Kinetics results suggested WXC-25 being one reversible non-competition inhibitors. Fluorescence quenching results indicated that WXC-25 quenched the fluorescence of α-glucosidase in a static manner. 3D fluorescence spectra results indicated that WXC-25 treatment could cause the conformation changes of α-glucosidase. Moreover, molecular docking simulated the detailed interaction of WXC25 with α-glucosidase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.