Abstract

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are the two mimic autoimmune diseases of the central nervous system, which are rare in East Asia. Quantitative detection of contrast-enhancing lesions (CELs) on contrast-enhancing T1-weighted magnetic resonance (MR) images is of great significance for assessing the disease activity of MS and NMOSD. However, it is challenging to develop automatic segmentation algorithms due to the lack of data. In this work, we present an automatic segmentation model of CELs based on Fully Convolutional with Attention DenseNet (FCA-DenseNet) and transfer learning strategy to address the challenge of CEL quantification in small-scale datasets. A transfer learning approach was employed in this study, whereby pretraining was conducted using 77 MS subjects from the open access datasets (MICCAI 2016, MICCAI 2017, ISBI 2015) for white matter hyperintensity segmentation, followed by fine-tuning using 24 MS and NMOSD subjects from the local dataset for CEL segmentation. The proposed FCA-DenseNet combined the Fully Convolutional DenseNet and Convolutional Block Attention Module in order to improve the learning capability. A 2.5D data slicing strategy was used to process complex 3D MR images. U-Net, ResUNet, TransUNet, and Attention-UNet are used as comparison models to FCA-DenseNet. Dice similarity coefficient (DSC), positive predictive value (PPV), true positive rate (TPR), and volume difference (VD) are used as evaluation metrics to evaluate the performances of different models. FCA-DenseNet outperforms all other models in terms of all evaluation metrics, with a DSC of 0.661±0.187, PPV of 0.719±0.201, TPR of 0.680±0.254, and VD of 0.388±0.334. Transfer learning strategy has achieved success in building segmentation models on a small-scale local dataset where traditional deep learning approaches fail to train effectively. The improved FCA-DenseNet, combined with transfer learning strategy and 2.5D data slicing strategy, has successfully addressed the challenges in constructing deep learning models on small-scale datasets, making it conducive to clinical quantification of brain CELs and diagnosis of MS and NMOSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call