Abstract

Macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (D-DT) are two pleotropic cytokines, which are coexpressed in various cell types to activate the cell surface receptor CD74. Via the MIF/CD74 and D-DT/CD74 axes, the two proteins exhibit either beneficial or deleterious effect on human diseases. In this study, we report the identification of 2,5-pyridinedicarboxylic acid (a.k.a. 1) that effectively blocks the D-DT-induced activation of CD74 and demonstrates an impressive 79-fold selectivity for D-DT over MIF. Crystallographic characterization of D-DT-1 elucidates the binding features of 1 and reveals previously unrecognized differences between the MIF and D-DT active sites that explain the ligand's functional selectivity. The commercial availability, low cost, and high selectivity make 1 the ideal tool for studying the pathophysiological functionality of D-DT in disease models. At the same time, our comprehensive biochemical, computational, and crystallographic analyses serve as a guide for generating highly potent and selective D-DT inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.