Abstract

Aliphatic aldehydes are toxic substances that correlate with the onset of many diseases. However, up to date, the methods to identify aliphatic aldehydes in biological samples are less selectivity and/or robustness. In this study, a strategy based on 2,4-dinitrophenylhydrazine (DNPH) capturing combined with mass defect filtering (MDF) was established and validated to identify aliphatic aldehydes in two biological samples (serum of immunosuppressed rats and oxidative damaged cells). Firstly, the mass spectrometric characteristic ions (m/z 163.01, 163.02 and 191.04) and fragmentation pathways of aldehyde-DNPHs were acquired through analyzing the standard references. Then, biological samples were derivatized by DNPH, a routine reagent, and subsequently assessed on an ultra-performance liquid chromatography coupled time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). Thirdly, the raw chromatogram was processed by MDF method to obtain interference-free chromatogram. Fourthly, the aldehyde-DNPHs were characterized through investigating the mass spectrometric information of each peak referred to the identified characteristic ions and fragmentation pathways. Finally, 6 and 8 aliphatic aldehydes were exclusively identified in serum of immunosuppressed rats and supernatant of oxidative damaged cells. Among which, propanal and butanal were positively correlate with immunosuppression, while formalin was more relevant to oxidative stress. The results demonstrated that the established strategy could robustly characterize the aliphatic aldehydes in biological samples, which would be helpful to evaluate the physical conditions of subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.