Abstract

2,4'-Dihydroxybenzophenone (DHP) is an organic compound derived from Garcinia xanthochymus, but there have been no reports on its biochemical functions and bioavailability. In this study, we evaluated whether DHP affects osteoblast differentiation and activation in MC3T3-E1 preosteoblast cells, as well as antiosteoporotic activity in zebrafish larvae. Nontoxic concentrations of DHP-treated MC3T3-E1 preosteoblast cells increased alkaline phosphatase (ALP) activation and mineralization in a concentration-dependent manner, accompanied by higher expression of osteoblast-specific markers, including Runt-related transcription factor 2 (RUNX2), osterix, and ALP. Consistent with the data in MC3T3-E1 preosteoblast cells, DHP upregulated osteoblast-specific marker genes in zebrafish larvae and simultaneously enhanced vertebral formation. We also revealed that DHP increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 and the total expression of β-catenin in the cytosol and markedly increased the localization of β-catenin into the nucleus. Furthermore, DHP restored the prednisolone (PDS)-induced marked decrease in ALP activity and mineralization, as well as osteoblast-specific marker expression. In PDS-treated zebrafish, DHP also alleviated PDS-induced osteoporosis by restoring vertebral formation and osteoblast-related gene expression. Taken together, these results suggest that DHP is a potential osteoanabolic candidate for treating osteoporosis by stimulating osteoblast differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.