Abstract

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most used herbicides for weed control. However, the use of large concentrations of 2,4-D is dangerous and have great carcinogenic potential. Thus, this work evaluated the 2,4-D sorption behavior by an organically modified montmorillonite nanoclay using kinetic and thermodynamic approaches. Adsorption isotherms and kinetic studies, conducted under controlled temperature and pH conditions, indicated a high capacity of the nanoclay to remove 2,4-D from aqueous medium, being that the adsorption mechanism probably involved physisorption and chemisorption. Besides, thermodynamic parameters obtained showed that the adsorption was enthalpically driven for the physisorption step, with $$\Delta H^{ \circ }$$ = − 9.849 kJ mol−1. The analyses showed that 2,4-D adsorption caused a partial exfoliation of the montmorillonite structure, probably due to the high herbicide concentration utilized. Release studies of 2,4-D from the nanoclay showed that the desorption process occurred in two steps, a burst release of the 2,4-D molecules followed by a slow release. The results demonstrated by this study indicates the feasibility of the proposed system for controlled release or even water treatment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.