Abstract

2,4-Dicholorophenoxy acetic acid (2,4-D) is a worldwide used hormone herbicide. Human dental pulp stem cells (hDPSCs) as a potential source of mesenchymal stem cells provide a confident model system for the assessments of chemicals in vitro. The main objective of this study was to examine the biological effects and damages attributed to 2,4-D on hDPSCs. hDPSCs were isolated from third molar pulp tissues and their mesenchymal identity were evaluated. Then, hDPSCs were treated with increasing concentrations of 2,4-D (0.1μM-10mM). Cell viability assay and cumulative cell counting were carried out to address 2,4-D effects on biological parameters of hDPSCs. Cell cycle distribution, ROS level and ALP activity were measured before and after treatment. AO/EB staining and caspase 3/7 activity were investigated to detect the possible mechanisms of cell death. Flow-cytometric immunophenotyping and differentiation data confirmed the mesenchymal identity of cultivated hDPSCs. 2,4-D treatment caused a hormetic response in the viability and growth rate of hDPSCs. G0/G1 cell cycle arrest, enhanced ROS level, and reduced ALP activity were detected in hDPSCs treated with EC50 dose of 2,4-D. AO/EB staining showed a higher percentage of alive cells in lower concentrations of the herbicide. The increment in 2,4-D dose and the number of early and late apoptotic cells were increased. DAPI staining and caspase 3/7 assay validated the induction of apoptosis. 2,4-D concentrations up to 100μM did not affect hDPSCs viability and proliferation. The intense cellular oxidative stress and apoptosis were observed at higher concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call