Abstract

New organic dyes that contain variable lengths of conjugation, featuring oligothiophene and arylamines at the 2- and 3-position, have been synthesized. These compounds are characterized by photophysical, electrochemical, and theoretical computational methods. Nanocrystalline TiO2-based dye-sensitized solar cells were fabricated using these molecules as light-harvesting sensitizers. The overall efficiencies of the sensitized cells range from 4.11 to 6.15%, compared to a cis-di(thiocyanato)-bis(2,2′-bipyridyl)-4,4′-dicarboxylate ruthenium(II)-sensitized device (7.86%) fabricated and measured under similar conditions. The devices made from these compounds have higher open-circuit voltage (VOC) compared to oligothiophene congeners with arylamines at the 2-position only. The hydrophobic segment at the 3-position appears to help retarding the charge transfer from the conduction band of TiO2 to the electrolyte, I3−. Supplementary studies of the transient photovoltage and electrochemical impedance are in support ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.